
Ili (1 COPY
NPS-54-89-02

NAVAL POSTRADUATE SCHOOL

* LMonterey, California

DTIC
S ELECTEI

C%E

SOFTWARE MAINTENANCE:
THE NEED FOR STANDARDIZATION

Norman F. Schneidewind

February 1989

Approved for public release; distribution unlimited.

Prepared for: Navy Management Systems Support Office
Norfolk, VA 23511-6694

89 :3 0~0~

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RADM. R. C. Austin Harrison Shull
Superintendent Provost

The research summarized herein was sponsored by the Navy Management Systems
Support Office under N6856187PO30034.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Norman F. Schneidewind
Professor
Department of Administrative Sciences

Reviewed by:

David R. O e, a a

Department of Administr ieSie e

Released by:

Kneale T.

Dean of Information 5 Policy Science

01'I II INI THIS L

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION 1b RESTRICTiVE MARKiNGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTIONiAVAILABILITY OF REPORT

. ... Approved for public release;
b. DECLASSIFICATION DOWNGRADING SCHEDULE distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)
NPS-54-89-O,

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (if applicable)

6C. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943

Sa. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Navy Management (If applicable) N6856187P030034
Systems Support Office I

8c. ADDRESS(Ciy, State, and ZIP Code) 10 SOURCE OF ;UNDING NUMBERS

Naval Air Station PROGRAM PROJECT TASK WORK UIT

Norfolk, VA 23511-6694 ELEMENT NO. NO NO. ACCESSION NO

11 TITLE (inciuae Security Classitacation)

Software Maintenance: The Need for Standardization

12, PERSONAL AUTHOR(S) ,m F |Norman F. Schneidewind

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Technical Report I FROM Auq.88 TOFeb.89 1 1989 February 12 26

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

Software Maintenance

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Procedures are proposed to assist the Navy Management Systems Support Office in performing

software maintenance. Hardware and software maintenance are contrasted. The key difference
between the two -- the ease with which software can be changed -- leads to the need for
managing software change. Standardization of software is proposed as the method for
managing software change. A model of software maintenance is advanced as the foundation for
standardizing software maintenance. J. .

i.

20. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIED.NLIMITED C SAME AS RPT. QODTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

408 646-2719
DO FORM 1473.84 MAR B3 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other editions ae obsolete.

• ~ ~~ ~ ----------I I I I

Software Maintenance: The Need for Standardization

by

Norman F. Schneidewind

February 1989

Approved for public release; distribution unlimited.

Prepared for: Navy Management Systems Support Office
Norfolk, VA 23511-6694

Accession For

NiTISGRA&I
DTIC TAB
Unannounced Q3
Justificatio

By
Distribution/

Availability Codes
Av'ai1 and/or

Dist Specil

Page 1

TABLE OF CONTENTS

I. INTRODUCTION 3

A. Definitions 4

B. Cost of Maintenance 4

C. Limits of Approach 5

II. PURPOSES 6

III. OBJECTIVES OF MAINTENANCE 6

A. Maintenance Process 6

B. Maintenance Tasks 7

C. Differences Between Hardware and Software 7
Maintenance

IV. METRICS FOR MAINTENANCE 8

V. MODEL OF MAINTENANCE 9

VI. STANDARDIZATION OF CHANGE DOCUMENTATION 11

A. Documenting the Effects of Change 12

B. Documentation Requirements 14

VII. SOFTWARE COMMUNICATION MECHANISMS AND MAINTENANCE 14

A. Kinds of Communication Mechanisms 14

B. Characteristics of Communication Between Software 14
Components

VIII. STANDARDIZATION THROUGH EXAMINATION OF DEVELOPMENT 15

A. Characteristics of Development Methodology 16

IX. EXAMPLE 17

A. Characteristics of Development Methodology 17

B. Characteristics of Programming Language 23

X. FURTHER RESEARCH 23

XI. SUMMARY 24

XII. REFERENCES 25

Page 2

LIST OF TABLES

I. EXAMPLE INPUT-OUTPUT CHANGE RELATIONSHIP 13

II. METRICS APPLIED TO EXAMPLE PROGRAM 22

LIST OF FIGURES

1. Model of the Interaction between Development, 10
Maintenance and Metrics

2. Batch file for Token-Ring LAN User Computer Start 19
Program

3. State Diagram of a Taken-Ring LAN User Computer Start 20
Program

Page 3

Abstract- Procedures are proposed to assist the Navy Management Systems
Support Office in performing software maintenance. Hardware and software
maintenance are contrasted. The key difference between the two -- the ease
with which software can be changed -- leads to the need for managing
software change. Standardization of software maintenance is proposed as the
method for managing software change. A model of software maintenance is
advanced as the foundation for standardizing software maintenance.

I. INTRODUCTION

Software maintenance is a major activity at the Navy Management Systems
Support Office (NAVMASSO). This report is provided to assist NAVMASSO in
its maintenance operations. The report describes procedures for
standardizing maintenance. The report makes the argument that a major
attack on the maintenance problem can be made through standardization.
Although the examples are oriented to local area network software and batch
files, whereas NAVMASSO uses COBOL, the procedures are general and can be
applied in any software development and maintenance environment.

NAVMASSO is one of the few organizations to recognize the importance of
software maintenance. Most organizations emphasize development with the
need for maintenance being an afterthought. NAVMASSO's concern for
maintenance is exemplified by its document "NAVMASSO Data Processing
Standard No. 22.A: Program Specification and Maintenance Procedures
Standard', 26 August 1985. The purpose of this standard 'is to describe the
program design in enough detail to permit coding by the programmer and to
provide the maintenance programmer personnel with the information necessary
to effectively maintain the system.' Included in the standard is the
objective of incorporating program maintenance procedures into the program
specification. This approach integrates maintenance with development, thus
forcing consideration of maintenance early in the life cycle. Equally
important is the section on 'Flexibility' which describes the capability
for adapting the program to changing environments. Providing the capability
to adapt to changing environments is the essence of the software
maintenance problem and is the issue which motivated this research report:
we view software maintenance as a process of change management. It is
important to note that it is not only the software that changes; the
documentation changes also. This important aspect of maintenance is
recognized in NAVMASSO's document 'NAVMASSO Data Processing Standard No.
21.B: System Documentation Development and Control Procedures', 19 June
1985 in which document changes/revisions procedures are described.

As an introduction to the subject of software maintenance, we provide
some definitions followed by an explanation of the importance of the
subject.

Page 4

A. Definitions

Software Maintenance: Modification of a software product after
delivery to correct faults, to improve
performance or other attributes, or to
adapt the product to a changed
environment [1).

This definition is the conventional one and is useful if our interest in
modification to software is limited to changes that are made after the
software is delivered. However, it is a fact that changes are not confined
to the post-delivery phase; they are made during all life cycle phases. Is
some cases, changes are made in significant numbers prior to delivery.

Maintainability: The ease with which a software can be maintained
[13.

Change Management: The process of making changes to software
and controlling their effects during the
entire life of the software.

This definition recognizes the fact that modifications to software must
be managed effectively during the entire life of the software. It is the
definition used here.

B. Cost of Maintenance

According to various sources, software maintenance accounts for a
significant amount of the total time and cost of running a data processing
organization. For example, one study reports the following: about half of
applications staff time spent on maintenance, over 40 percent of the effort
in supporting an operational application system spent on user enhancements
and extensions, and about half a man-year of effort allocated annually to
maintain the average system E2). In another report the same authors list
the factors which cause the significant maintenance effort: system age,
system size, relative amount of routine debugging, and the relative
development experience of the maintainers [33. System age drives the other
factors: with increased system age, system size increases, leading to
greater effort allocated to routine debugging, and with increased system
age, the relative development experience of the maintainers declines due to
organizational turnover and change. All of these factors tend to increase
the time and cost of performing maintenance. Thus maintenance is an area
that deserves a lot of attention. Improvements in maintenance practices
should result in reduced costs and increased effectiveness of performing
maintenance.

Page 5

However there is a limit to red,!cing cost and increasing effectiveness
through improved practices, because the maintainability of the software has
largely been determined by the developer before it ever reaches the
maintainer. The maintainer can only influence quality during the
maintenance phase of the software life cycle. The quality of the software
as designed is determined, in part, by whether the software development
methodology assists the developer in producing maintainable software.
Consequently, maintenance practices, which maintainers control, and
development methodology, which developers control, are candidates for
standardization.

C. Limits of Approach

The objective of standardization is to improve the maintainability of
both existing and future software. Contrariwise, there are certain aspects
of the 'maintenance problem' that the above approach does not address.
These are the following: 1) Much of the software that is maintained was
developed without benefit of any methodology; consequently, methodology is
not an issue in these cases; 2) Methodology is only an issue for future
software; thus improvements in maintenance practices are only applicable to
existing software; 3) An important determinant of the maintainability of
software is the knowledge and skill of the developer and maintainer; 4)
There are other aspects of a development methodology, such as
expressiveness, that are important when evaluating it for use in addition
to its usefulness as an aid for producing maintainable software. These
aspects art beyond the scope of the paper as are the areas of software
engineering environments and tools, which can contribute significantly to
the quality of both development and maintenance.

The paper consists of the following sections:

o Purposes
o Objectives of Maintenance
o Metrics for Maintenance
o Model of Maintenance
o Standardization of Change Documentation
o Software Communication Mechanisms and Maintenance
o Standardization through Examination of Development Methodologies
o Example
o Further Research
o Summary

Page 6

II. PURPOSES

The purposes of the paper are the following: 1) Provide a brief
introduction to software maintenance by describing its objectives,
processes and tasks, contrasting it with hardware maintenance for the
benefit of readers who may be more familiar with hardware maintenance and
2) Present the case for standardizing software maintenance practices and
those aspects of software development methodology that affect the
maintainability of the delivered software. Purpose 2 is derived from I on
the basis that the kind of discipline and rigor that exists in hardware
maintenance should be an objective of software maintenance.

Notice that we do not contend that identical methodologies or procedures
should be used for software maintenance because there are differences in
characteristics and complexities between the two; these differences are
described in the paper. Rather, we propose that software maintenance should
be supported by a model of maintenance and a minimum set of standardized
practices, which would be aucmented or tailored according to the needs of
individual organizations or applications. The maintenance model includes
characteristics of development methodologies because, as stated previously,
these characteristics affect maintainability.

III. OBJECTIVES OF MAINTENANCE

The objective of maintenance is to make required changes in software in
such a way that its value to users is increased. Required changes can
result from either the need to correct errors or to increase the
functiorality of the software.

A. Maintenance Process

In the broad view of maintenance, it is not limited to making
post-delivery changes [4]. Rather, it is a process that starts with user
requirements and never ends E53. Even the installation of and changes to a
replacement system can be considered part of the maintenance process.
Our approach to identifying the maintenance functions which should be
standardized is to: 1) Adopt the view that maintenance is a process of
change management and 2) Identify tasks in maintenance that are concerned
with making changes to software, including changes to documentation
(e.g., specification, design, listing, test plan, etc.).

Page 7

B. Maintenance Tasks

Using the concept of change management, the following maintenance tasks
can be identified:

o Identify need for change

o Determine whether change should be made, based on benefit-cost
analysis

o Evaluate the effects of change, including possible side effects

o Determine whether change can be made without creating an
incompatibility with the rest of the software

o Make the change, if warranted, and only if it can be done in a
standard way

C. Differences Between Hardware and Software Maintenance

Whereas failures in hardware are true failure events, which are caused
by physical phenomena -- wearout, burnout, malfunction, or stress --
software 'failures' are error discovery events, which are caused by errors
made by humans. Software errors are caused by the following: inadequate or
misunderstood specifications, incorrect program logic, misuse of
programming language, and mistakes in clerical operations. These errors
exist in software prior to its execution and are only discovered by virtue
of an input forcing the software through an execution path that contains an
error.

The ability to understand the nature of errors when maintaining software
has been reported to be related to the quality of documentation [6].
Therefore the characteristics of documentation that affect maintenance
should be a part of any plan to improve maintenance. Documentation for
maintenance is discussed in the section 'Standardization of Change
Documentation'.

1) Spare Parts

For software, there are no spare parts for replacing a module that has
an error. The error must be fixed before the operation can continue. This
is an inherent factor which makes software less reliable than hardware.

Page 8

Repair times and down times can be very long. This situation demands easy
maintainability. In particular, traceability must be achieved: the ability
to easily trace through all relevant documents, organizations and personnel
for the purpose of locating information which will assist the maintainer in
correcting the error in such a way that the change will not damage another
part of the program that is working (ripple effect).

2) Prototyping

Prototyping of software is similar to the hardware engineer's test bench
and development systems (e.g., in circuit emulation systems). With the
software prototype we want to obtain a quick and inexpensive test of a
development idea before committing a lot of time, personnel and money to
the production system. Another objective is to test design approaches in a
simplified and controlled environment without the confounding interactions
of a large system present. If the ideas won't work in the prototype, there
is no hope of them working in the production system. One use of a prototype
seldom mentioned is to test for flexibility of making changes to the
software. For example, is the software constructed so that the effects of
making changes are highly visible?

In many cases the prototype is treated as throwaway code. It is used for
the purposes described and an improved version, based on the lessons
learned, is coded as the next prototype or as the production system, when
the design iteration process ends.

IV. METRICS FOR MAINTENANCE

In order to manage software change it is desirable to measure the
effects of change. This is accomplished with quality metrics. A quality
metric is defined as follows: a quantitative measure of the degree to which
software possesses a given attribute that affects its quality [1]. Ideally,
there would be agreement on a set of application-independent,
language-independent, software structure-independent metrics (universal
metrics'). Agreement does not exist in the software engineering community
on a universal set. Lacking this agreement, metrics which are known to be
related to the effectiveness and efficiency of the software development
process are used during development to measure and improve the development
process; these are called process metrics [73. It is assumed that their use
will result in maintainable software. However, process metrics, like
traceability, have little to do with measuring whether the system achieves
its quality requirements. For that we need product metrics like
reliability, accuracy, response time, throughput, etc. The two types of
metrics are related in the sense that high process metric values will
contribute to high product metric values. Product metrics are beyond the
scope of this paper.

Page 9

The role of metrics in maintenance can be demonstrated by posing the
following question:

When a maintenance action is taken, how are the relevant metrics values
affected?

o What are the relevant metrics?

o What were the original values?

o What are the new values?

o Examine incremental changes

* Are they in the right direction (e.g., reduced complexity)?

* Are they approximately the right values (e.g., within the
bounds of experience with respect to the maintenance action)?

V. MODEL OF MAINTENANCE

To explain the dynamic interaction between development and maintenance
as exemplified by the changes in metrics values as a result of development
and maintenance actions, the model in Figure 1 is provided. A model of the
maintenance process is essential for standardization to be achieved.
Different organizations may want to use different metrics, depending on the
relevance of the metrics to their maintenance environments and projects.

Page 10

a S
- - - - - - - - - - -

Development
1 Methodology
* a

Contributes 1 Affects Ability
to Original to Make Correct
Metrics Values Changes

* S

*--------------------- -- - - -- - -I S
a I

v New Metrics v
------------------- I Values I-------------------

ICompute & Recompute: ------------------ >1 Maintenance I
ICommon Metrics I< ------------------ I Actions 1

------------------- Changes Metrics I - ------------------- i
Values

* S

I S

v v
(Sample List) Add
Completeness -I Delete
Consistency I Modify
Modularity 1---> Improved I
Traceability I Maintainability? i
Verifiability -I

* S

* I
S I

v v
* S __ _ I I a

---------------- S ----___-------I --------------- S

1 Metrics Data Base I Maintenance Data
1 (Metrics and !-->!Correlation!<--! Base (Maintenance

Projects History) : I ? 1 1 Action History) i
----------------- i i ------------------- i

Figure 1. Model of the Interaction between Development, Maintenance
and Metrics.

Page 11

This model may be understood and applied as follows:

A. Evaluate: Estimate the incremental change in metric value of a proposed
maintenance action. If the software change is made, measure its effect
after the change is made. To the extent feasible, quantify the effect of
the change. The following questions are relevant when considering a change
to software:

o Given the development methodology and a maintenance action, how will
the metrics values be affected (magnitude and sign)? Will they change in a
direction to indicate the software will be (or has been) improved? Or will
the change indicate that the software will be (or has been) degraded?

This model would assist the maintenance organization to: 13 determine
whether a change should be made, 2) determine whether a change improved
maintainability, if it was made, and 3) document the history of the project
and the change so that this information can be used when making future
change decisions.

B. Feedback: Understand that taking a maintenance action changes metrics
values and that the new metrics values will influence future maintenance
actions.

C. Data bases: Maintain data bases of project characteristics, metrics, and
maintenance actions as an aid to learning from the past: Was a given metric
a good predictor of the effect of a given maintenance action? Which
maintenance actions improved and which degraded the software for given
project characteristics? Did the nature of the development methodology
influence the maintainability of the software?

VI. STANDARDIZATION OF CHANGE DOCUMENTATION

Because there is a great difference in applications, programming
environments, etc., in various organizations, the maintenance standard
should accommodate those differences and specify only a minimum set of
requirements and procedures.

Standardization can be viewed as a process of posirg questions prior to
a maintenance action and having the maintainer answer them. The purpose of
this is to ensure that the maintainer has thought about the consequences of
proposed changes and is alerted to potential pitfalls. Maintenance
decisions and actions should be recorded in a data base for use in making
future maintenance decisions.

Page 12

The entities which are subject to change are software components (an
element of a software system such as a module or unit). For the sake of
brevity, 'software component' will hereafter be called 'component'.

A. Documenting the Effects of Change

It should be a standard procedure of maintenance to document a proposed
change in the following format (or similar format) and, if the change is
made, to fill in as much detail as possible about the change. The items to
be considered in deciding on a change are more important than the specific
format used to document the change. The Xs in the matrix indicate a
relationship between an input item and an output item.

Change an input

Type

Format

Value (How are outliers handled?)

Range

Precision

Accuracy

Name (Standardize name; should say what module does)

Questions:

* What is the effect of input on outputs?

* What is the effect of input on computation of function?

* Computation within bounds?

Page 13

TABLE I

EXAMPLE INPUT-OUTPUT CHANGE RELATIONSHIP

OUTPUT (Name)

Type Format Value Range Precision Accuracy

INPUT
(Name)

Type X

Format X

Value X X X X

Range X X X X

Precision X X X X

Accuracy X X X X

Page 14

B. Documentation Requirements

As a minimum the following should be standard documentation for
supporting maintenance: requirements specification, design specification,
program listing, test plan, and test results, as summarized below.

Phase Documentation

Requirements Analysis Requirements Specification
Design Design Specification
Coding Listing
All Test Plan, Test Results

VII. SOFTWARE COMMUNICATION MECHANISMS AND MAINTENANCE

Mechanisms which are available for communicating between components are
an important aspect of maintenance because of the serious consequences of
making an error in adding or changing a linkage. As opposed to other types
of software changes, a change in a communication mechanism affects more
than one component. This is particularly important for networks where a
defective mechanism can adversely affect the operation of computers at
remote sites.

A. Kinds of Communication Mechanisms

o Data linkages (for the transfer of data)
o Control linkages (for the transfer of control)
o Subroutine call
o Procedure call
o Message passing
o Remote procedure call (RPC)
o Transaction (e.g., update in a data base management system)

B. Characteristics of Communication Between Software Components

1) Explicit: There is an actual transfer or exchange of data or
passing of parameters or an output from one component
is the input to another component.

2) Implicit: Based on the position of the given component within a
sequence of components (e.g., instructions in a
program)

Page 15

Before components are added, deleted or modified, it should be standard
procedure to ascertain and document the effects of making the change on
inter component communication. Furthermore, if the change is made, as much
detail as possible should be documented about the change, as suggested by
the questions below.

3) ADD a component

o What other components will the given component communicate
with once it is added?

o What are the communication linkages? (parameter passing,
message exchange, RPC, etc.?)

o What existing communication linkages will be affected by
the change?

4) DELETE a component

o What communication linkage will be broken by the deletion?

o What are the new communication linkages that result from
the deletion?

5) MODIFY a component

o What is the existing communication linkage which involves
this component?

o How will this communication linkage be modified by the
change in the component?

VIII. STANDARDIZATION THROUGH EXAMINATION OF DEVELOPMENT
METHODOLOGIES

There is evidence that the characteristics of development methodologies
[8] and the characteristics of programming languages [9] can influence
maintainability.

Page 16

A. Characteristics of Development Methodology

When we maintain software we may not be cognizant of the development
methodology which was used to produce the software, but it will affect our
ability to maintain the software. The evaluation hinges on a single
criterion: does the methodology support the creation of software which is
easy to change without inducing side-effects (an unexpected and undesirable
result of making a change ?). This objective will be achieved if the
methodology forces the designer to formally consider the consequences of
making a change once the software has to be maintained. It follows that in
order to capitalize on a methodology that supports maintenance, it is
necessary to use that methodology to maintain the software. The following
is a standard procedure for evaluating a methodology with respect to its
capability to support maintenance.

Does the methodology assist to:

1) Prevent side effects when performing maintenance

2) Provide ability to make selective change (i.e., don't change or
destroy another part of the software when making a change)

3) Reduce dependencies between inputs, processes and outputs
(dependices make it difficult to change the software without
affecting something else which was working correctly prior to
the change)

4) Determine whether change can be made without creating an

incompatibility with the rest of the software

5) Support a rational change policy:

o Make a change, if warranted, and only if it can be done in a
standard way, a 'standard way' being defined as being in
conformance with the above procedure for assessing the impact
of change.

o Keep changes small

o Make changes in small, controlled increments

o If there is a big change to make, break the changes into
manageable pieces.

Page 17

IX. EXAMPLE

A. Characteristics of Development Methodology

The process of identifying and evaluating development methodology
principles that are conducive to maintenance is illustrated with real
examples from personal computer network operating system software (IBM PC
DOS V3.2 (10) and PC LAN Program V1.1 111]) and the state diagram method of
specifying software logic [123.

A batch (command file) for starting a user personal computer on a local
area network (LAN) and assigning resources provided by a server is shown in
Figure 2 and the corresponding state diagram is shown in Figure 3. This
batch file was modified to provide some additional network capabilities as
shown in Figure 2; the corresponding modification is shown in Figure 3 with
dotted boxes. The boxes represent states and the arrows represent state
transitions. The numbers on the left side of the commands in the batch file
correspond to the numbers on the state boxes on Figure 3. The convention
for labeling state transition arrows is: Event/Action. In some cases in
Figure 3 there is no event; in these cases 'NE' is used to indicate this.
The DOS and PC LAN Program handle transfers of control implicitly (e.g., a
transfer of control occurs automatically from PC LAN Program to DOS under
certain error conditions). There is no capability in the batch file
language for describing error conditions explicitly, although they are
shown in the state diagram to clarify the operation.

Asterisks in the batch file identify comments. Unfortunately, the
comment concerning accessing the D drive was not changed with the
modification. This comment is no longer applicable and caused confusion in
trying to understand the program logic. With the modification, neither the
D drive nor the directory program IDIR are accessed at this point in the
program. The comment should have been changed to refer to the E drive and
the PROFILE program. This affects the transitions from states 5 to 6 and 6
to 7. For the sake of brevity, the error events and actions associated with
states 6" and 7" are not shown in Figure 3; they are similar to those for
states 6 and 7.

........ -- i i I r n m ra m I I

Page 18

Neither a state diagram nor another type of methodology that would show
the consequences of making a change was used in creating the batch program.
The use of such a methodology would have helped to avoid this kind of error
by:

o Preventing side effects (erroneous comment)

o Providing ability to make selective change (replace commands 6 and 7 with
6" and 7' correctly).

o Identifying existing communication linkages (communication between
commands 6 and 7 and the D drive and its directories) and by identifying
changed communication linkages (communication between commands 6' and 7'
and the E drive and its directories).

Page 19

*** Start.Bat = Start.TU3
: *** For Token Ring User. User 3270 Emulation on User Hard Disk

*** Loads Profile Which is Used for Checking Hardware Compatibility
1 ECHO OFF
s *** Establish Path to Network and DOS Programs Residing on User

Computer
2 PATH C:\NETWORK;C:\APPS\DOS
: *** Establish Access for IDIR to IDIRDATA Sub Directory
APPEND C:\1DIRDATA
ECHO ON

a *** Load Token-Ring Programs
3 TOKREUI

NETBEUI
a *** Start the User Computer on the Network, Using Name Provided by

User
4 NET START MSG %I /SRV:I /ASG:10 /PB1:16K /USN:3 /CMD:12 /SES:18
: *** Request Use of Server Directories and Printer
5 NET USE E: \\TN3\APPS

NET USE D: \\TN3\DISKD
NET USE LPT1 \\TN3\PRINT

: *** Access D Directory which Contains IDIR and Program Batch Files
6 D:

*** Load IDIR
7 IDIR

Modification: Replace commands 6 and 7 above with commands 6' and 7":
(comment was not changed)

: *** Access D Directory which Contains IDIR and Program Batch Files
6" E:
: *** Load Profile
7" PROFILE

Figure 2. Batch file for Token-Ring LAN User Computer Start Program

Page 20

0 v :LOAD START FILE

IDLE------------------------------------- CAN' T LOAD START
-------- FILE/ERROR MSG.

;NE/LOAD START FILE FROM DOS
1 v v

---------- 1 CAN'T LOCATE 1 --------
1START 1DIRECTORIES/ERROR MSG. ;BACK AT 1
IFILE----------------------------- > DOS
1LOADED

1NE/EXECUTE PATH &
APPEND COMMANDS

2 v
----------- I CAN 'T LOAD TOKEN-RING I
!DIRECTOR-! PROGRAMS/ERROR MS5G.

IISa __-------------------- i

!LOCATED
i-------------

1NE/LOAD TOKEN-RING I
I PROGRAMS

3 v
--------- I CAN'T START NETWORK/ERROR MS66.!

TOKEN- :1
I RING -- - - - - - - - - - - - - - -

!PROGRAMS!I
1LOADED

1NE/START NETWORK

4
i ---------I RESOURCES NOT

1 AVAILABLE/ERROR MSG.
*NETWORK 1 -------------- ----

STARTED ICAN'T LOAD IDIR/
I ERROR MSG. :AT D 2

------------- 1------------------------ >1 PROMPT I

*NE/REQUEST RESOURCES a a i a----

5 v 6 v 1 7
1 -------- I NE/ACCESS I----------- I NE/LOADI-----

I I DRIVE D, I I 1DIR IDIRECTORVI
2 RESOURCES1 -------------- >2 DRIVE D I--------------- >2PROGRAM 2
1ASSIGNED 1 ACCESSED: 2(1DIR) 6

I aLOADED

1 1 DRIVE NOT DEFINED/ERROR MS6G. I AT NET!
a a--- >! MENU 2
1 6 2-------- 7'

I NE/ACCESS .. NE/LOAD .PROFILE

II DRIVE E .DRIVE E . PROFILE .PROGRAM.

--------------------- >. ACCESSED.--------------- >. LOADED
........... a

Figure 3. State Diagram o4 a Token-Ring LAN User Computer Start
Program

Page 21

It was mentioned previously that metrics are part of the maintenance
model -- they assist in evaluating the effects of change. When used over
hundreds of components, the metrics can assume numerical values (e.g., for
Completeness: ratio of completed components to total number of components
in the system). For a single component, as in the example, a qualitative
interpretation is appropriate. This is done below for the example, using
typical metrics. Although the modification has improved functionality, it
has degraded maintainability.

Page 22

TABLE 2

METRICS APPLIED TO EXAMPLE PROGRAM

Metric Original
Program Modified Program

Completeness:

Are all required Yes No.The correct comment is missing.
program parts
present?

Consistency:

Are the code and Yes No. The comment contradicts the
documentation commands and vice versa.
uniform and free
of contradiction?

Modularity:

Is the structure No No. Quirks of the DOS language
cohesive and self- inhibit modularity, but similar
contained? commands are grouped.

Traceability:

Can the program Yes No. Can't trace between commands,
parts be traced drives and directories.
from one to
another?

Verifiability:
Can the correct Yes No. The erroneous comment confuses
operation and the verification.
performance of
the program be
verified?

Page 23

B. Characteristics of Programming Language

Characteristics of the programming language can also significantly
influence the ability to maintain (9]. Two brief examples from the DOS
language E103 will be given:

o PATH command: If this command appears once and is repeated, the most
recent occurrence of the command is the only one in effect. This means that
any paths used to establish directories in a previous occurrence are lost
unless they are repeated in the new PATH command. In effect, this means
that a new path must be a superset of the previous path, if all original
directory information is to be retained. However, this could result in long
path commands and, without writing complicated logic, commands are limited
to a single line! Thus the maintenance principle of being able to make a
selective change (i.e., one wants to just add or delete parts of the PATH
command, not write a new one) cannot be achieved with this command.

o IF command: The IF command has the format: IF stringl==string2 command.
The requirement for the second .=° is unexpected. This nuance of the
language has caused several errors in implementing network batch files.
This seemingly minor item can cause havoc in maintenance because a frequent
change to batch files occurs as the result of adding capabilities to the
network that are conditioned on the availability of certain resources. The
IF command is key to specifying these conditions.

X. FURTHER RESEARCH

Further research is necessary to examine development methodologies in
more detail with respect to their influence on maintainability, for example
the object oriented approach [9]. The objectives of this paper have been to
make a start towards the goal of standardizing maintenance bv proposing
that a change management methodology is the key to standardization, and to
begin a dialogue with the software engineering community concerning
approaches for standardizing maintenance. The objective has not been to
solve the whole problem, which is complex.

Page 24

XI. SUMMARY

We have contrasted software maintenance with hardware maintenance.
Although there are similarities, the major difference -- the ease of
changing software -- causes unique software maintenance problems. We have
proposed that maintenance can be improved through standardization. The
elements of the proposed standardization process are the following:

o Metrics

o Model of maintenance

o Chanqe documentation

o Software communication mechanisms

o Development methodology supportive of maintenance

An example was presented of the application of one development
methodology -- state diagrams -- to illustrate how proposed and
accomplished changes can be illuminated so that errors can be avoided and
maintainability improved.

Finally, we stated that because the maintenance problem is so complex,
more research must be done -- particularly on the relationship between
development methodologies and maintainability -- before maintenance can be
standardized. However, we feel that the first four elements -- metrics,
model of maintenance, change documentation, and software communication
mechanisms -- have merit and that NAVMASSO should evaluate them for
possible adoption.

Page 25

XII. REFERENCES

E13 An American National Standard IEEE Standard Glossary of
Software Engineering Terminology, ANSI/IEEE Standard 729, 1983.

E2] Bennet P. Lientz and E. Burton Swanson, "Problems in Application
Software Maintenance", Comm. ACM, vol. 24, no. 11, pp. 763-769,
Nov. 1981.

[3] Bennet P. Lientz and E. Burton Swanson, "Software Maintenance
Management", Reading, MA: Addison-Wesley Publishing Co., 1980.

E4] Norman F. Schneidewind, "The State of Software Maintenance",
Trans. on Soft. Engr., vol. Se-13, no. 3, pp. 303-310, March
1987.

E53 Meir M. Lehman, "Programs, Life Cycles, and Laws of Software
Evolution", Proc. of the IEEE, vol. 68, no. 9, pp. 1060-1076,
September 1980.

E6) S. Letovsky and E. Soloway, "Strategies for Documenting
Delocalized Plans", Proc. of the Conference on Software
Maintenance - 1985, Computer Society Press, pp. 144-151.

£73 Rome Air Development Center, RADC-TR-85-37, Final Technical
Report, February 1985.

[8] Bob Britcher and Jim Craig, "Upgrading Aging Software Systems
Using Modern Software Engineering Practices: IBM-FSD's
Conversion of FAA's National Airspace (NAS) En Route Stage A
Software From 9020s to S/370 Processors', Proceedings,
Conference on Software Maintenance-1985, Computer Society Press,
pp. 162-170.

(9) Brady Booch, Software Engineering with Ada, The Benjamin/Cummings
Publishing Company, Inc., 1983.

[10]Disk Operating System Reference Version 3.2, IBM Corp. and
Microsoft, Inc., February 1986.

1113IBM PC Local Area Network Program User's Guide Version 1.10,
February 1986.

[12]Harlan D. Mills. "Stepwise Refinement and Verification in
Box-Structured Systems", Computer, vol. 21, no. 6, June 1988,
pp. 23-36.

Page 26

DISTRIBUTION LIST

Mr. Roger Dauqherty, Code 01B
Navy Management Systems Support Office
Naval Air Station
Building R52-7
Norfolk, VA 23511-6694

Commanding Officer
Navy Management Systems Support Office
Naval Air Station
Norfolk, VA 23511-6694

Technical Director
Navy Management Systems Support Office
Naval Air Station
Norfolk, VA 23511-6694

Prof. Tarek Abdel-Hamid
Code 54Ah
Naval Postgraduate School
Monterey, CA 93943

Prof. Norman Schneidewind 10
Code 54Ss
Naval Postgraduate School
Monterey, CA 93943

National Technical Information Center 2
Cameron Station
Alexandria, VA 23314

Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Computer Center Library
Code 0141
Naval Postgraduate School
Monterey, CA 93943

Administrative Sciences Department Library
Code 54
Naval Postgraduate School
Monterey, CA 93943

Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

